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Interfacial tension between polystyrene and polybutadiene is predicted by using a square gradient theory in 
conjunction with the Flory-Orwoll-Vrij equation-of-state expression for the free energy of mixing. The equation- 
of-state interaction parameter is determined by fitting the theory to the experimental cloud points. The square 
gradient coefficient is also calculated by the relation derived from a scattering function. The combined theory for 
interfacial tension predicts a magnitude and temperature dependence of interfacial tension although no adjustable 
parameter is used in calculating interfacial tension. The molecular weight dependence of interfacial tension is also 
predicted, and well described by a relation 3' = 3"= + CM~ z where z = 2/3 for low molecular weight species and 
z = 1 for higher molecular weight species. © 1998 Elsevier Science Ltd. All rights reserved. 
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INTRODUCTION 

The interfacial tension, y, between immiscible polymer 
pairs has been of great theoretical and practical interest. 
Since the interfacial property can greatly affect the 
mechanical properties of polymer blends, the structure and 
thermodynamic state of polymers at the interface have 
become important issues. Particularly, interfacial tension is 
the most important interfacial property because it very often 
controls the morphology of multiphase polymers 1. Inter- 
facial tension is a thermodynamic property of the system 
which can be calculated directly from statistical thermo- 
dynamic theories. A number of thermodynamic theories 
have been developed for calculating the interfacial tensions 
of polymer blends b~ several workers 2-6. 

Anastasiadis et al." proposed a square gradient theory 8 in 
conjunction with the Flory-Huggins expression 9 for the free 
energy of mixing. In this approach, the magnitude of 
interfacial tension was strongly dependent upon the value 
of the interaction parameter, X. Since it is not always easy 
to determine the exact value of the temperature-dependent 
x-parameter, the prediction of the interfacial tension from 
the theory is very limited. 

In formulating theories for surface tension, Poser and 
Sanchez 5, and Dee and Sauer l° adopted the lattice fluid (LF) 
theory | |  and Flory-Orwoll-Vrij (FOV) equation-of-state 
theory12, 5 respectively. However, Poser and Sanchez have 
not calculated the interfacial tension of the polymer- 
polymer interface, although they have calculated the 
interfacial tension between polymer and oligomer liquids 
using their formula. Moreover, they used the interaction 
parameter and the square gradient coefficient as adjustable 

* To whom cor respondence  should be addressed 

parameters to achieve a quantitative agreement with the 
experimental data. The use of these fitting parameters may 
reduce the usefulness of such theories and sometimes 
makes systematic analysis difficult. Dee and Sauer 1° 
reported that the FOV equation might provide a better 
description of the molecular weight and temperature 
dependence of surface tension for polymer blends as 
compared to the LF theory. They also used the square 
gradient coefficient as an adjustable parameter. Moreover, 
they did not attempt to calculate the interfacial tension of 
polymer pairs, although they calculated the surface tension 
of polymer blends. 

In this study, the square gradient coefficient is theoreti- 
cally determined by following the approach of Anastasiadis 
et al. 7, and from this the interfacial tension between 
polystyrene (PS) and polybutadiene (PBD) is calculated 
using a square gradient theory combined with the FOV 
equation-of-state theory. The equation-of-state interaction 
parameter XAB is determined by fitting the binodal curve 
from the equation-of-state theory to the experimental data 13. 
The effects of temperature and molecular weight on the 
interracial tension are also examined for PS-PBD systems. 

THEORY 

The extension of the Cahn-Hilliard (CH) theory s to 
multicomponent is well documented 14'15. The application 
of the FOV equation-of-state theory to polymer solutions 
and blends has been studied by many workers 16-18. 
However, the use of the CH theory in conjunction with 
the FOV equation-of-state theory to describe the interfacial 
tension of polymer blends has not been reported yet. 
Although Dee and Sauer 1° reported that they derived the 
equation for surface tension using the CH theory in 
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conjunction with the FOV equation-of-state theory by 
following the Poser and Sanchez approach, they did not 
extend their theory for calculating the interfacial tensions 
of polymer blends. 

The basis of the CH theory is the assumption that the free 
energy per unit volume in a region of nonuniform 
composition is a function of both the local composition th 
and the composition of the immediate environment. The 
total free energy for the mixture of volume V is 

G = Iv[G0(0) + K(~70) 2 -~-...] dV (1) 

where G0(0) is the free ener§y density of a uniform system 
of composition 0 and/((V0) is the additional composition 
contribution to the free energy arising from the local con- 
centration gradient. 

Following the development by Cahn and Hilliard 8, the 
interracial tension between two coexisting phases c~ and/3 is 
given for a one-dimensional composition change as 

3' = 2 fO~(rAg(0)) 1/2 dO (2) 
JO~ 

where 0 ,  and 08 are the volume fractions of the two 
coexisting phases and Ag(0) is the excess free energy 
density of the uniform system with respect to a standard 
state of an equilibrium mixture c~ and/3. The excess free 
energy density Ag(0) is defined by 

Ag(0) = AG0(0) - [nAAp, A(0e) + nBAp, B(0e)] (3) 

where nA and nB are the number density of molecules of 
type A and B, respectively, 0~ is the equilibrium composi- 
tion of either of the coexisting phases, and AtzA and A#B are 
the changes in chemical potentials of A and B. It is note- 
worthy that any mean-field fluid model can be used for 
determining the value of Ag(0) in equation (2). 

To calculate the % one must know the value of the 
coefficient of square gradient, /(, the excess free energy, 
Ag(0), and the composition of coexisting phases c~,/3. First, 
an equation-of-state theory is employed in this paper for 
calculating the value of Ag(0). According to Flory et al. ~2, 
the reduced equation of state is given by 

/39 91/3 1 
-- (91/3 - 1) 7"9 (4) 

where p=p/p* ,  T = T / T *  and 9=v/v* are the reduced 
pressure, temperature and volume with respective to the 
corresponding characteristic properties, p*, 7"* and v*, 
respectively. 

The application of this equation-of-state to a mixture of 
NA rA-mers and NB r~-mers is based on the mean-field 
approximation. The equation-of-state for a two-component 
mixture has a form identical to that for the pure compo- 
nent if the following mixing rules are made 

P* = 0APA + 0BPB -- OAOBXAB (5) 

T* =P*/(OAP*A/T*A + OBp~/T~) (6) 

0 B = S B O B ] ( S A O  A ~-  SBOB) (7) 

where 0A and 0B denote the segment fractions of compo- 
nents A and B, respectively, 0B is the surface fraction of 
component B, and XAB is defined as a parameter arising 
from the difference in interaction energy between like and 
unlike segmental pairs. In equation (7), si is the ratio of 
surface area per unit core volume which can be estimated 

by the Bondi's group contribution method 19. In the equa- 
tion-of-state theory, the chemical potential of component 
A in a mixture is given by 

A~A/RT = ln0A + (1 -- rA/rB)O B 

PA A J3 ~, I V  A - -  1 ' ,  

* 2 v?~x~80. 
+ - -  ( 8 )  

9RT 

where V] is the molar core volume of component A. When 
subscripts A and B are interchanged, one obtains an expres- 
sion for the chemical potential of component B, A#B. 
Then, the excess free energy, Ag(0) is calculated by sub- 
stituting the value of A/~A and A/~B into equation (3). The 
composition, 0~ and 0~, of the coexisting phases c~ and/3 
at equilibrium are determined by equating the chemical 
potentials: 

(AttA) ~ =(AttA) e and (A/.tB)ot = (A/XB) 8 (9) 

Finally, the coefficient of square gradient,/(, is determined 
by following the approach of Anastasiadis et al. 7. They 
derived the coefficient by using a linear response theory 
within the framework of the random phase approxima- 
tion 2°'21. de Gennes 21 suggested that the chain experiences 
no force and remains ideal in a dense system. Therefore, an 
ideal single chain approximation can be employed in the 
calculation of the scattering function, S(q), where q is 
the scattering vector. The scattering function is related to 
the volume fractions and the chain length by 21"22 

1 1 1 
+ 2X (10) 

S(q) 0AfD(NA, q) 0BfD(NB, q) 

wherefD(NA,q) is the Debye function 23, defined as 

2 
fD(X) = ~5(X + e x p ( - - x ) -  1) (11) 

with x = N2qZb2/6 = q2 < r 2 > / 6  = qZR~, where b is the 
Kuhn statistical segment length, < r~ > is the mean square 
end-to-end distance, and RG is the radius of gyration. From 
the two limiting expressions for S(q) which can be calcu- 
lated for qRG >> 1 and qRG << 1, the square gradient coeffi- 
cient can be obtained. The square gradient coefficients, /(, 
for the narrow interphase and the broad interphase are given 
as follows: 

/(narrow_ (F2)A (F2)B 
- -  4- (qRG >> 1) (12) 

kT 240VA 24(1 - 0)VB 

Kbroad (r2)A (r2)B 
- -  + (qRG < 1) (13) 

kT 360V A 3 6 ( 1 - 0 ) V  B 

Equation (13) and its equivalent for a symmetric system 
24525 have been widely used • - to model the dynamics of con- 

centration fluctuations in binary polymer blends near the 
critical point, whereas equation (12) has been used to 
study micelle formation in homopolymer-copolymer 

26 mixtures . Here we used equation (13) for calculating the 
square gradient coefficient. 

RESULTS AND DISCUSSION 

The square gradient theory (SG-FOV) combined with the 
FOV equation-of-state theory has been used for calculating 
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T a b l e  1 Characteristic parameters for pu~  polymers 

Polymer p* (J/cm 3) T*(K) v*(cm3/g) 

PS ~ 506.0 7948 0.8205 
PBD b 488.5 6494 0.9435 

~From Ref. 30 
6From Ref. 31 
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Figure 1 A comparison of a simulated binodal curve of PS-PBD 
blends using the FOV equation of state with experimental cloud points ~3, 
from which an EOS interaction parameter X~2 is determined. The 
experimental cloud points were determined for the blend system of PB 
(M,~ = 2400 g/tool) and PBD (Mw = 2400 g/mol) 
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Figure 2 The calculated interfacial tension for PS-PBD blends by use of 
a square gradient theory combined with the FOV equation-of-state 
expression for the free energy of mixing. The molecular weight of PS is 
varied from 5000 to 3000 g/mol while the molecular weight of PBD is fixed 
at 1000 g/mol 

the interfacial tension between polystyrene (PS) and 
polybutadiene (PBD). In using the SG-FOV theory, a 
contact interaction parameter XAB in the FOV theory and 
characteristic parameters of pure components should be 
determined. One successful method to determine the value 
Of XAB is to fit the equation-of-state theory for binodal curve 
to the experimental data, although there are several other 
methods such as melting point depression 27, scattering 28, 
inverse gas chromatography 29, etc. The characteristic 
parameters for PS and PBD used in this study are taken 

T a b l e  2 Temperature dependence of inteffacial tension for PS-PBD 
blends" 

3/ = a - b t  

Molecular weight of PS a (mN/m) b [mN/(m °C)] 

5000 1.229 0.0063 
6000 1.397 0.0059 
7000 1.507 0.0055 
8000 1.597 0.0053 
9000 1.662 0.0049 
10000 1.717 0.0047 
11000 1.749 0.0044 
12000 1.765 0.0041 
15000 1.785 0.0032 
20000 1.789 0.0022 
30000 1.796 0.0012 

"The PBD of 1000 g/mol is used for calculating interracial tension between 
various molecular weights of PS and PBD 

from the literature 3°'3~ and are listed in Table l.  The 
parameter SA/SB in equation (7) for PS(A)/PBD(B) is 1.15 
when the Bondi's method for estimating the van der Waals 
volume and surface area is used. 

Figure 1 shows a comparison of the simulated binodal 
curve with experimental cloud points t3, by which the value 
of XAB could be determined. First, we assume that the 
highest cloud point on the phase diagram corresponds to the 
critical point of the system. Then, we simulate binodal curves 
according to equation (9) as varying the value of XAB. By 
comparing the simulated curves with the experimental cloud 
points, we determine the XAB value which gives the best-fit to 
the experimental data. The simulated upper critical solution 
temperature and its composition are very close to the 
experimental data, although the shape of the simulated 
binodal curve is not identical to the measured cloud points. 

The temperature dependence of the interfacial tension 
between PS and PBD is predicted at various molecular 
weights of PS as shown in Figure 2. The densities of PS 
and PBD, which are prerequisite to calculate interfacial 
tension, are taken from the data of Fox and Flory 32 and of 
Anastasiadis et al. 7, respectively. Interfacial tension 
linearly decreases with temperature in the range of 100- 
200°C when higher molecular weights of PS ( > 9000 g/ 
mol) are used. At a given temperature, the interfacial tension 
increases with the molecular weight of PS. However, in the 
case of lower molecular weight of PS the temperature 
dependence of interfacial tension deviates from linearity at 
close to the upper critical solution temperature. It is 
noteworthy that the upper critical solution temperature 
becomes lower as the molecular weight of the polymers 
decreases 33. The temperature dependence of interfacial 
tension can be described by a relation 3' = a - bt, where t is 
the temperature in degrees Centigrade, and the temperature 
coefficient, b, of interfacial tension corresponds to the 
entropy change, AS ~, of interface formation per unit area at 
constant volume, as represented by the following equation: 

b = AS ~ -- d3, (14) 
dT 

Table 2 lists the temperature coefficient of interfacial 
tension between PS with various molecular weights and 
PBD with a fixed molecular weight (1000 g/mol). As can 
be seen in Table 2, the temperature coefficient of rela- 
tively lower-molecular-weight PS is larger than that of 
higher-molecular-weight PS. This phenomenon was experi- 
mentally observed by Nam and Jo 34. The plot of interfacial 
entropy versus the molecular weight of PS is shown in 
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Figure 3 Molecular weight dependence of interfacial entropy of PS and 
PBD blends. The molecular weight of PBD is fixed at 1000 g/mol 
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Figure 4 Molecular weight dependence of calculated interfacial tension 
between PS and PBD at 140°C. Solid and dashed lines are drawn by M.- l 
and M.-2/3 in equation (15), respectively 
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Figure 5 Plots of  the interfacial tension between PS and PBD versus 
(a) M. - l  of  PS and (b) M. -2/3 of PS at 140°C 

Figure 3. It is clear that the interfacial entropy increases 
with decreasing molecular weight of PS, which results in 
a lower interfacial tension. 

The molecular weight dependence of the interfacial 
tension is shown in Figure 4 where the molecular weight 
of PS is varied while the molecular weight of PBD is fixed. 
The interfacial tension increases with increasing molecular 
weight of PS and then approaches an asymptotic value. 
According to Gaines and co-workers 35'36, interfacial tension 
can be expressed as follows: 

7 = "/~ - C M n  z (15) 

where C and z are constants, and 3'~ is the interfacial 
tension at infinite molecular weight, and M n is the number 
average molecular weight. The inverse two-thirds molecular 
weight dependence (i.e. z = 2/3) proposed by Gaines 
e t a / .  35"36 has been used empirically to describe interfacial 
tensions of low molecular weight materials. At a given 
value of z, the values of 3'~ and C are obtained by the best 
fit of equation (15) to the data. The value of 3'= in our model 
is 2.23 mN/m at z -- 2/3, which is in good agreement with 
experimental values (3'~ = 2.25 mN/m at z = 2/3) 34. Close 
examination of Figure 4, however, reveals that there is a 
discernible deviation from the M,- 2/3 dependence for higher 

- 2/3 molecular weight PS, although the M,~ dependence 
shows good agreement with experimental data for low 
molecular weight PS. The value of z = 1 gives a better fit 
with experimental data for higher molecular weight PS. 

In order to more clearly examine the molecular weight 
dependence of interfacial tension, the interfacial tension is 
plotted against M,-2/3 and M~ -I  as shown in Figure 5. A 
deviation from the M,-2/3 dependence is clearly seen for 
higher molecular weight PS, whereas the M,- ~ dependence 
shows a better plrediction for higher molecular weight PS. 
In fact, the M,- dependence of interfacial tension is well 
described by theory. According to Broseta et al.37, the origin 
of molecular weight effects on the properties of polymer- 
polymer interfaces is purely entropic. The loss of trans- 
lational entropy due to the confinement of the chains into 
one-half space is more severe for small molecules. As a 
result the interface is broader for small chains, resulting in 
a lower interfacial tension. They proposed the equation for 
the interfacial tension of monodisperse polymer mixtures by 

7g 2 
3' = 3,~ [1 - ]~ ( 1  + 1 )  + ...] (16) 

where ~A( = XAaNA) and o~B( = XaBNB) are the degree of 
incompatibility. Equation (16) properly predicts the M7 l 
dependence of interfacial tension. However, it is not 
clear at this time why the molecular weight dependence of 
interfacial tension follows z = 2/3 at lower molecular 
weight, but follows z = 1 in equation (15) at higher 
molecular weight. 

CONCLUSIONS 

Interfacial tensions of PS-PBD blends are predicted using 
the square gradient theory in conjunction with the Flor- 
Orwoll-Vrij equation-of-state expression for the free 
energy of mixing. The equation-of-state interaction para- 
meter, XAB, is determined by fitting the equation-of-state 
theory for binodal curve to the experimental data, and other 
characteristic parameters of the theory are pre-determined 
before calculating interfacial tension. The square gradient 
coefficient, r, is calculated using the equation derived from 
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a scattering function. The dependence of interfacial tension 
on temperature shows linearity except for near the upper 
critical solution temperature. The interfacial tension 
between PS and PBD increases with the molecular weight 
of PS and then approaches to the asymptotic limit. The 
predicted interfacial tension follows the M~-2/3 dependence 
at lower molecular weights while it follows the M~ -1 
dependence at high molecular weights. 
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